New Fluorescent Dye Can Light up the Brain

Summary: Researchers have developed a new tool for non-invasive brain imaging that can cross the blood-brain barrier and can differentiate between healthy tissue and glioblastoma brain tumors in mouse models.

Source: Rice University

Talk about a bright idea: Thanks to chemists at Rice University and Stanford University, lighting up the brain is no longer just a figure of speech.

Rice’s Han Xiao, Stanford’s Zhen Cheng and collaborators have developed a new tool for noninvasive brain imaging that can help illuminate hard-to-access structures and processes.

Their small-molecule dye, or fluorophore, is the first of its kind that can cross the blood-brain barrier. What’s more, it allowed the researchers to differentiate between healthy brain tissue and a glioblastoma tumor in mice.

“This could be very useful for imaging-guided surgery, for example,” Xiao said. “Using this dye, a doctor could determine where the boundary is between normal brain tissue versus tumor tissue.”

The study is featured on the cover of the Dec. 28 issue of the Journal of the American Chemical Society.

If you’ve been to an aquarium or a nightclub, you’ve probably noticed the colorful glow that some objects or surfaces emit under a black light. Known as fluorescence, this glowing effect can be useful for rendering visible things that otherwise go unnoticed.

“Fluorescence imaging has been applied for imaging cancer in different parts of our body,” Xiao said. “The advantages of a fluorescence probe include high resolution and the ability to adapt the probe to read for different substances or activities.”

The deeper a tissue or organ is, the longer the wavelengths needed to discern the presence of fluorescent small molecules. For this reason, the second near-infrared (NIR-II) channel with wavelengths of 1,000 to 1,700 nanometers is especially important for deep-tissue imaging. For reference, visible light wavelengths range from 380 to 700 nanometers.

“Our tool is really valuable for deep imaging because it functions in the NIR-II region,” Xiao said. “In contrast to NIR-II wavelengths, fluorescent effects within the visible spectrum or with near-infrared wavelengths between 600 and 900 nanometers (NIR-I) will only get you skin-deep.”

Brain imaging poses a particular challenge not only because of tissue depth and accessibility, but also because of the blood-brain barrier, a layer of cells that acts as a very selective filter to restrict the passage of substances from the circulatory system to the central nervous system.

This shows a colorful brain
Known as fluorescence, this glowing effect can be useful for rendering visible things that otherwise go unnoticed. Image is in the public domain

“People always want to know what exactly is happening in the brain, but it’s very hard to design a molecule that can penetrate the blood-brain barrier. Up to 98% of small-molecule drugs approved by the Food and Drug Administration (FDA) cannot,” Xiao said.

“Generally speaking, the reason a NIR-II dye molecule tends to be big is because it is a conjugated structure with many double bonds,” he continued.

“This is a true problem and the reason why we have been unable to use fluorescence in brain imaging until now. We tried to address this issue by developing this new dye scaffold that is very small but has a long emission wavelength.”

Unlike the other two known NIR-II dye scaffolds, which are not capable of crossing the blood-brain barrier, the one developed by Xiao is more compact, which makes it a great candidate for probes or drugs targeting the brain.

“In the future, we could modify this scaffold and use it to look for a lot of different metabolites in the brain,” Xiao said.

Beyond the brain, the dye developed by Xiao has much greater lasting power than indocyanine green, the only NIR small-molecule dye approved by the FDA for use as a contrast agent. A longer lifespan means researchers have more time to record the fluorescent trace before it disappears.

“When exposed to light, the indocyanine green dye trace deteriorates in seconds, whereas our dye leaves a stable trace for more than 10 minutes,” Xiao said.

Funding: The research was supported by the Cancer Prevention Research Institute of Texas (RR170014), the National Institutes for Health (GM133706, CA255894), the Department of Defense (W81XWH-21-1-0789), the Robert A. Welch Foundation (C-1970, C-0807), the National Science Foundation (1803066, 2203309), a Hamill Innovation Award, the John S. Dunn Foundation Collaborative Award and the Stanford University Department of Radiology.

About this neuroscience and neurotech research news

Author: Silvia Cernea Clark
Source: Rice University
Contact: Silvia Cernea Clark – Rice University
Image: The image is in the public domain

Original Research: Closed access.
Photostable Small-Molecule NIR-II Fluorescent Scaffolds that Cross the Blood-Brain Barrier for Noninvasive Brain Imaging” by Han Xiao et al. Journal of the American Chemical Society


Abstract

Photostable Small-Molecule NIR-II Fluorescent Scaffolds that Cross the Blood-Brain Barrier for Noninvasive Brain Imaging

The second near-infrared (NIR-II, 1000–1700 nm) fluorescent probes have significant advantages over visible or NIR-I (600–900 nm) imaging for both depth of penetration and level of resolution.

Since the blood–brain barrier (BBB) prevents most molecules from entering the central nervous system, NIR-II dyes with large molecular frameworks have limited applications for brain imaging.

In this work, we developed a series of boron difluoride (BF2) formazanate NIR-II dyes, which had tunable photophysical properties, ultrahigh photostability, excellent biological stability, and strong brightness.

Modulation of the aniline moiety of BF2 formazanate dyes significantly enhances their abilities to cross the BBB for noninvasive brain imaging.

Furthermore, the intact mouse brain imaging and dynamic dye diffusion across the BBB were monitored using these BF2 formazanate dyes in the NIR-II region. In murine glioblastoma models, these dyes can differentiate tumors from normal brain tissues.

We anticipate that this new type of small molecule will find potential applications in creating probes and drugs relevant to theranostic for brain pathologies.

Join our Newsletter
I agree to have my personal information transferred to AWeber for Neuroscience Newsletter ( more information )
Sign up to receive our recent neuroscience headlines and summaries sent to your email once a day, totally free.
We hate spam and only use your email to contact you about newsletters. You can cancel your subscription any time.